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It is given that y = 0.2 at x = 0.

(a) Use the approximation % ~ (%j , with &= 0.1, to obtain an estimate of the value of y
0

atx=0.1.
(2

(b) Use your answer to part (a) and the approximation yzz—_hyo ~ (%) , with 2= 0.1, to obtain
1

an estimate of the value of y at x = 0.2.

Give your answer to 4 decimal places.

(&)
d’y dy
1 -x?)— —x— +2y=0.
( ) e R
Atx=0,y=2and Y__ .
dx
d3
(a) Find the value of —Z atx=0.
dx
(&)
(b) Express y as a series in ascending powers of x, up to and including the term in x°.
C))
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0

Given that | 1] is an eigenvector of the matrix A, where

-1
3 4 p
A=|-1 g -4/,
1 1 3
0
(a) find the eigenvalue of A correspondingto | 1],
-1
2
(b) find the value of p and the value of ¢.
C))
/ 10
The image of the vector | m | when transformed by A is | —4 |.
n 3
(c¢) Using the values of p and ¢ from part (), find the values of the constants /, m and .
C))
(a) Giventhatz= cos @ +1isin @, use de Moivre’s theorem to show that
1
2"+ — =2 cos nb.
z
2
(b) Express 32 cos® @ in the form p cos 66+ g cos 40+ r cos 20 + s, where p, g, r and s are
integers.
6))
(c¢) Hence find the exact value of JB cos® @ dé.
0
C))
Prove by induction that, for n € 7", Z(Zr ~1)?=1n@2n-1)2n+1).
r=1
6))
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Given that f(n) = 3% + 24 +2,

(a) show that, for k € Z*, f(k + 1) — f(k) is divisible by 15,

C))
(b) prove that, forn € Z°, f (n) is divisible by 5,
3
(c) show that it is not true that, for all positive integers n, f(n) is divisible by 15.
(1)
The points 4, B and C have position vectors, relative to a fixed origin O,
a=2i-j,
b=i+2j+ 3k,
c=2i+3j+2k,
respectively. The plane /7 passes through 4, B and C.
(a) Find AB x AC.
C))
(b) Show that a cartesian equation of [7is 3x —y +2z=17.
2

The line / has equation (r — 5i — 5j — 3k) x (2i — j — 2k) = 0. The line / and the plane /7 intersect at
the point 7.

(¢) Find the coordinates of 7.

5)
(d) Show that 4, B and T lie on the same straight line.

3)
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The transformation 7" from the z-plane, where z = x + iy, to the w-plane, where w = u + 1v, is
given by
z+1
w= , z#0.
z

(a) The transformation 7" maps the points on the line with equation y = x in the z-plane, other
than (0, 0), to points on a line / in the w-plane. Find a cartesian equation of /.

S))
(b) Show that the image, under 7, of the line with equation x +y + 1 =0 [1[J[Jin the z-plane is a
circle C in the w-plane, where C has cartesian equation
w+v —u+v=0.
(M
(¢) On the same Argand diagram, sketch / and C.
©))

TOTAL FOR PAPER: 75 MARKS
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0.2 (dv
L @ " | Z02xe® (=02) M1
0.1 Ldy
[dy ) .
(b) S L 022xe" ~0.2222 B1
Ldv )
2702 02022 Ml
0.2
v, =0.2444 cao | Al 3)
[5]
- oodhy d™s d'y dy _d
2. a 1—x° ——2x —r———4+2—=0 M1
@) [ \] dx dx- dx dx
At x=0 dd{ _—E_l M1 Al cso
X dx &)
(diy )
(b) ‘ - | =4 Allow anywhere | Bl
Ldxt
' f'(0) , f£"(0) ,
v=£(0)+f'(0)x+ l \].\"'— é }1.‘
S N S I M1 Alft, Al
6 (dep)(4)

[7]
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Question

Number Scheme Marks
(3 4 pY(0Y} (0}
3. (a) |_1 g —4| 1|=ﬁ, 1I
1 1 3)\-1) 1)
Third row 1-3=-0 = A=2 M1 A1 (2)
q 4 ‘U‘ % ﬂ --_II 4 —p"ll I |:| Y
)] -1 g 4||1 1= q+4|:'2 1 M1 Al
1 1 3 )i-1) | 2) -1)
First row 4-p=0 = p=4 Method for either M1
Second row g+d=2 = g=-2 Both correct ‘:;]i ft
(3 4 43(1Y [10)
(c) -1 -2 4||m|=|4
1 1 3)in) \3)
+dm+4n=10
—{=2m—4n=—4
I+m+3n=3 Obtaining 3 linear equations | M1
2142m =6
3+2m=8 Feducing to a pair of equations and | M1
solving for one variable
I=2.m=1.n=0 Solving for all three variables. | M1 A1 (4)
[10]
Alternative to (c)
1_" 2 8 B8
AT :E' -1 -5 -8 M1 M1
-1 -1 2,
2 8 8)(10} (2)
—-1 -3 -B| —4;: | M1 Al (4)
-1 -1 2)\3) {0)
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Question

Number Scheme Marks
4. (a) z" =(cos&+1sin er' = cos nf +1sin né
2" =(cos@+1isin H]_” =cos|—nf )+1sm(—nf) = cosnf —1sin nd both | M1
Adding z" —% =2cosnb % cso | Al (2)
F1Y
(b) | z+=| =2°+62* +152* +20+15z7 + 6z~ + 2~ M1
::5+:'5+6|:’:4—:4~]—15|:§:]—:']‘]—ED M1
64cos” 8 =2cos68+12cos48+30cos28+20 M1
32cos’ @ =cos66+6cos48+15cos26+10 Al Al
[:pzl_.g:'ﬁ_. r=15,5=10} Al any two correct (5)
© [cos6ds :|' 1 I|J.[c0565'+ 6cos 46 +15cos 26 +10)d6
[&1116& 6sin4f 155126 1(}5’} M1 Alf
[ ]-T = —Ex—3+Ex£+mi_' oz 343 or exact equivalent | M1 Al (4)
o320 2 2 2 2 3 ] 48 32 )
[11]
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Question

Number Scheme Marks
;1
5. n=1: 1':§><1><1=<3 Bl
(Hence result 1s true for n=1.)
fl 2 L S L2
Eflr— 1) =2 (2r=1) +(2k+1)
Tl ra=l
= %.H_ 2k—-1)(2k+1)+(2k+ l}l: . by induction hypothesis | M1
:1:[:213:—1:]['2;:3 —k+6k+3)
3 .
=%f2k+l]{2k3 +5k+3)
:%[:2ﬁ:+1:]f2k+3)[k+lj M1 Al
— %(k +D2(E+ D) 1020k + 1) +1]
(Hence, 1f result 1s true for n =k, then 1t 1s true for n=k+1.)
By Mathematical Induction, above implies the result 1s true forall ne | . %
cso | Al (3)
[5]
6. | @ f(k+1)—f(k)=3" 425 3% g%
=3%(3*-1)+2%2(2* -1) M1
=3% %80+ 27«15 can be implied | Al
=3%" %240+ 2% x15=15(16x3%" + 272 M1
Hence 15| f(k+1)-f(k) * cso | Al (4)
Note: f(k+ l:] —f [R'J 15 divisible by 240 and other appropriate multiples of 15 lead
to the required resulr.
by n=1: f[l}:3;—2‘5:145:ix29 = 3[f(1) Bl
(Hence result 15 true for n=1.)
From (a) f(k+1)—f(k)=154. say. By induction hypothesis f(k)=54. say.
f(k+1)=f(k)+154=5(u+34) = 5|f(k+1) M1
(Hence, if result 1s true for n =k, then 1t is true for n=k+1.)
By Mathematical Induction. above implies the result 1s true forall ns |~ %
Accept equivalent arguments cso | Al (3)
(c) f(1)=145=5x29 is not divisible by 13, so result is not true for all Bl (1)
Note: There 1s no mteger for which £(n :] 15 divisible by 13 and any specific example [8]

should be accepted.
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Question

Number Scheme Marks
7. (a) AB=-i+3j+3k, AC=4j+2k any two | Bl
i j k
ABxAC=|-1 3 3|=-6i+2j—-4k M1 Al Al
0 4 2
Give Al for any two components correct or the negative of the correct answer. (4)
(b) Cartesian equation has form 3x—y+2z=p
[:2, -1 ll}:] = 6+1l=p or use of another point | M1
3x—y+2z=7 * or any multiple | Al (2)
SRNEE
(c) Parametric formof line1s r=| 5 |[+.4] -1 . or equivalent form | M1 Al
) \-2)
Substituting into equation of plane
3(5424)—(5-4)+2(3-24)=17 M1
Leading to A=-3 Al
T:(-18.9) Al (3)
(d) AT =-3i+9j+9k. BT =-2i+6j+6k both | M1
These are parallel and hence 4. B and T are collinear * (by the axiom of parallels) M1 AL (3)
[14]
Alternative to (d)
The equation of AB: r=2i—j+u [:—i +3j+ 31{] of equivalent
i —-1=2—-u = u=3 M1
(=3 = OT=-i+8j+9% M1
Hence 4, B and T are collinear ¥ cso | Al (3)

Note: Column vectors or bold-faced vectors may be used at any stage.
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Question

Number Scheme Marks
l+(A+1)
g8 (a) Let z=A+A1; w:/‘{,;ﬂJl M1
A(l+1)
B A+(A+1)1 . 1-1
CA(1+1) 1-d M
(24+1)+1
7 —i1-':'—,'1 Al
24
u=1l+—, v= L M1
24T 24 :
Eliminating A gives a line with equation v=u—1 or equivalent | Al (3)
- A—A1
b) Let z=A—(A+1)1; =
(b) Le (A+1)1: » T—(2+1); M1
A—A1 A+(A+1)1
= X : M1
A=(A+1)1 A+(A+1)1
L{2A+1)+ A1
utive AT AL Al
2A°4+244+1
A(2A+1] i
= # V= ; Mi
247 +2441 247 +24+1
Z=24+1
v
24 (2A+1)-1 |
V= — - — = ._.':_ — = M]
T4+ (24+1) +1 (1) +1
Reducing to the circle with equation u” +v° —u+v=0% cso | M1 AL (7)
(c)
'y
v ft their line | B1ft
Circle through origin, centre in correct quadrant | B1
Intersections correctly placed | Bl (3)
— 7 [15]
< =

N\
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Question

Number Scheme Marks
8. Alternative for (b)
: A—A1
Let z=A—(A+1)1; ISESS
i Al W= G M
A—A1 A+(A+1)
S e Tl e : M1
A=(A+1)1 A+(A+1)1
1{2A+1)+ A1
H+1v :u Al
2 +2441
A(24+1) i
w= ¥ Lie= ; Ml
2A°+24+1 2A°+24+1
s CA(24+1) ) A A(22+1) A
UtV —utv= - = + o D —+— .
240 +24+41) \24°424+1) 24042441 24°+24+1
(4% +42° + 27 )+ 27 =227 (227 + 22 +1)
_\ : — ) M1
(24 +24+1)
=0 % M1Al (T)
8. Alternative for (b)
Let z=A—(A+1)1; u+iv—l M1
S ’ S A—(A+Di ’
(u+n)(A-(A+)=A-A1 M1
A+ v(A+ D+ [vi-uw(d+1))i=i-A Al
Equating real & imaginary parts
A+ vA+1)=4 (1) vi—Au—u=-4 (11) M1
From(i) A=—0" From (i) A=—0b
l—u—v l—u+v
v u
= M1
l-u—v l-u+v
Reducing to the circle with equation u” +v' —u+v=0% M1 AL (7)
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