OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education MATHEMATICS 2644 Probability & Statistics 4 Wednesday 23 JUNE 2004 Afternoon 1 hour 20 minutes Additional materials: Answer booklet Graph paper List of Formulae (MF8) TIME 1 hour 20 minutes ## INSTRUCTIONS TO CANDIDATES - Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet. - Answer all the questions. © OCR 2004 [D/100/4390] - Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate. - You are permitted to use a graphic calculator in this paper. ## INFORMATION FOR CANDIDATES - The number of marks is given in brackets [] at the end of each question or part question. - The total number of marks for this paper is 60. - Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper. - You are reminded of the need for clear presentation in your answers. 1 For the events A and B, $P(A) = \frac{1}{3}$, $P(B) = \alpha$ and $P(A \cup B) = \frac{8}{9}$. - (i) For what value of α are A and B mutually exclusive? [2] - (ii) For what value of α are A and B independent? [3] - In a certain large population of car owners, the proportion that have fully comprehensive insurance is p. In a random sample of n owners from this population, the number that have fully comprehensive insurance is denoted by X. (i) Show that $$Y = \frac{X}{n}$$ is an unbiased estimator of p . [3] - (ii) A particular random sample of 150 car owners contains 94 who have fully comprehensive insurance. Use this information to calculate an estimate of the variance of Y. [2] - 3 The effect of a certain drug, intended to increase the rate of heart-beat, was measured on 16 volunteers. These volunteers were divided into two groups of 8. The first group was treated with the drug and the second group was treated with a placebo (i.e. a treatment not containing a drug). The heart beats were measured one hour after treatment. After a week the experiment was repeated with the same volunteers, this time with the treatments reversed. The results, in beats per minute, for the 16 patients were as follows. | Volunteer | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |-----------|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----| | Drug | 102 | 86 | 75 | 81 | 61 | 98 | 69 | 79 | 58 | 71 | 80 | 69 | 84 | 92 | 70 | 94 | | Placebo | 98 | 84 | 73 | 89 | 66 | 84 | 88 | 71 | 56 | 63 | 98 | 63 | 70 | 81 | 61 | 89 | A test is to be carried out, at the 5% significance level, of whether a majority of people treated with the drug would have an increased heart-beat rate. - (i) Carry out the test using the sign test. [6] - (ii) State an advantage of using the Wilcoxon signed-rank test rather than the sign test. [1] - 4 The continuous random variable X has probability density function given by $$f(x) = \begin{cases} \lambda e^{-\lambda(x-a)} & x \ge a, \\ 0 & \text{otherwise,} \end{cases}$$ where a and λ are constants. (i) Show that the moment generating function of X is $$\frac{\lambda e^{at}}{\lambda - t}$$. [3] (ii) Find $$E(X)$$. [2] (iii) Show that Var(X) is independent of a. [4] 5 Three unbiased dice, A, B and C, are thrown together. The total number of sixes occurring on dice A and B is denoted by X and the total number of sixes occurring on dice B and C is denoted by Y. The joint probability distribution of X and Y is given in the following table. | | | | X | | |---|---|------------------|------------------|---| | | | 0 | 1 | 2 | | | 0 | 125
216 | 25
216 | 0 | | Y | 1 | $\frac{25}{216}$ | $\frac{30}{216}$ | a | | | 2 | 0 | а | b | (i) Show that $$a = \frac{5}{216}$$ and find the value of b. [3] (ii) Find $$E(X)$$. [2] (iii) Find $$Cov(X, Y)$$. [4] - (iv) Give a reason why Var(X Y) is not equal to Var(X) + Var(Y). - A bus company operates one service each day between Leeds and Leicester, and records show that during 2003 the median time for the journey was 207.5 minutes. For 2004, the times, T minutes, of the first 80 journeys were used to test whether the median time had changed. It was decided to use the Wilcoxon signed-rank test with a significance level of 2%. The values of T = 207.5 were found (none of which was zero) and the values of |T| = 207.5 were ranked, smallest first. The sum of the ranks corresponding to the positive differences was 1114. - (i) Assuming that the sample is representative of the times for the whole year, carry out the test. - [8] - (ii) What distributional assumption is required for the validity of the test? [1] - (iii) Comment on the validity of the assumptions made in parts (i) and (ii). [2] - 7 The probability generating function of a discrete random variable R is given by $$G_R(t) = t^3 (a + bt)^3,$$ where a and b are constants. It is given that E(R) = 4. (i) Show that $$b = \frac{1}{3}$$ and find the value of a . [6] (ii) Find $$Var(R)$$. [3] The sum of n independent observations of R is denoted by S. (iii) Show that $$P(S = 3n + 3) = \frac{2^{3n-4}n(3n-1)(3n-2)}{3^{3n}}.$$ [4] | 1 | (i) | Use $P(A \cap B)=0$ and $P(A \cup B)=P(A)+P(B)-P(A \cap B)$ $\alpha = \frac{5}{9}$ | M1
A1 | 2 | | |---|------|---|--------------------|---|--------------------------------------| | | (ii) | Use $P(A \cap B) = P(A)P(B)$
or conditional probability formula
$\frac{1}{3} + \alpha - \frac{8}{9} = \frac{1}{3}\alpha$
$\alpha = \frac{5}{6}$ | M1
A1
A1 | 3 | aef | | 2 | (i) | E(Y)=E(X/n)=E(X)/n
= np/n
= p so Y is an unbiased estimate of p | M1
A1
A1 | 3 | Must have statement | | | (ii) | Var(<i>Y</i>)= <i>p</i> (1- <i>p</i>)/ <i>n</i>
0.00156 (3SF) | M1
A1 | 2 | Correct formula with est(<i>p</i>) | | 3 | (i) | H ₀ : $p = \frac{1}{2}$, or $p \le \frac{1}{2}$, H ₁ : $p > \frac{1}{2}$
(where p is the population proportion whose heart-beat rate increases after drug) | B1 | | | | | | Form differences ,D-P (or P-D) and count the number of + (or -) values, <i>X</i> Obtain 12 (or 4) | M1
A1 | | | | | | Attempt to find $P(X \ge 12)$ (or $X \le 4$)
EITHER: from table; giving 0.0384
Compare correctly with 0.05 and
Reject H_0 , and accept that heart-beat rate | M1A1 | V | ft 12 or 4 | | | | increased in a majority of people taking drug OR: z-value with cc 1.75 Compare correctly with 1.645 and state | B1
M1
A1 | | ft 0.0384 Only from tail prob | | | | conclusion as above. OR: CR from table; $X \ge 12$ (or $X \le 4$) 4 (or 12) is in CR, so reject H ₀ and conclusion as above | B1√
M1A1
B1√ | 6 | ft 1.75 Only from tail prob | | | (ii) | More information is used |
B1 | 1 | Magnitude of differences | | (i) | $\int_{a}^{\infty} \lambda e^{-\lambda(x-a)} e^{xt} dx$ | | | | |-------|--|--------------------------|---|---| | | Integral with correct limits
Correctly integrated, $[\lambda/(\lambda-t)]e^{-x\lambda+xt+\lambda a}$
Given answer obtained convincingly | B1
B1
B1 | 3 | | | (ii) | EITHER [α] Reasonable attempt at M'(t) with intention find M'(0), $\lambda a e^{at}/(\lambda - t) + \lambda e^{at}/(\lambda - t)^2$ OR [β] (See (iii)[β]) Attempt to expand mgf to find | M1 | | Using quotient or product rule. | | | coefficient of t | M1 | | | | | OR[γ] Attempt to use pdf, correct form and limits $a + 1/\lambda$ | M1
A1 | 2 | | | (iii) | EITHER [α]:
M"(t)
[$\lambda a^2/(\lambda-t) + 2\lambda a/(\lambda-t)^2 + 2\lambda/(\lambda-t)^3$] e^{at}
Var(X)=M"(0) -[M'(0)] ²
$1/\lambda^2$, (independent of a) | M1A1
M1
A1 | 4 | Reasonable attempt M1 With attempt to evaluate | | | OR [β] which includes (ii)
M(t)= $(1+t/\lambda+t^2/\lambda^2)(1+at+1/2a^2t^2)$
E(X)= $a+1/\lambda$
E(X^2)= $a^2+2a/\lambda+2/\lambda^2$
Var(X) as in [α] | M1A1
B1
B1
M1A1 | 6 | M1 for at least 3 correct terms | | | OR [γ]
Change variable to y , where $y=x-a$
$f(y) = \lambda e^{-\lambda y}$,
Var(Y)=Var(X) and $f(y)$ is independent of $aSo Var(X) is independent of a$ | M1
A1
M1
A1 | 4 | Or by integration to find $E(X^2)$ | | (i) | P(X=2,Y=1) =P(A6,B6,C not6)
=(1/6)(1/6)(5/6)=5/216 AG
b=1/216 | M1
A1
B1 | 3 | With attempt to evaluate Could be found first | | (ii) | p(0)=150/216, p(1)=60/216, p(2)=6/216
$E(X)=\frac{1}{3}$ | B1
B1√ | 2 | aef
ft marginal distribution | | (iii) | E(XY)=30/216+20/216+2/216 (=1/4)
E(XY)-E(X)E(Y)
5/36 | M1A1
M1
A1 | 4 | M1 with one error With attempt to evaluate Accept 0.139 | | | Covariance is not zero | B1 | 1 | (iv) | | 6 | (i) | H_0 : $m=207.5 H_1$: $m \neq 207.5$ | B1 | | Or in words | |---|----------|---|------------------------------|------------|--| | | | $P \sim N(\mu, \sigma^2)$; with $\mu = 80 \times 81/4, \sigma^2 = 80 \times 81 \times 161/24$ N(1620,43470)
P($P \le 1114$); $z = (1114.5 - \mu)/\sigma$ Correct expression $z = -2.425$ OR -2.427 EITHER[α]
Compare correctly with -2.326 | M1
A1
M1
A1
A1 | | At least one correct parameter
May be implied later
With or without or with wrong cc | | | | or -2.054
Use -2.326 and Reject H ₀ and accept a change in the median time OR [β }
Compare $\Phi(z)$ correctly with 0.01 or 0.02 | M1 A1√ M1 A1√ | 0 | ft z | | |
(ii) | Use 0.1 and conclusion as above T has a symmetric distribution | A1 v

B1 | 8

1 | ft z | | | (II)
 | 7 has a symmetric distribution | | 1
 | | | | (iv) | e.g Road conditions during first 80 days unlikely to be typical Distribution of times unlikely to be symmetrical | B1
B1 | 2 | Reasonable comment not given in question. Accept normality of <i>P</i> as an assumption in (i)-CLT etc. | | 7 | (i) | $(a+b)^3=1$ or $a+b=1$
$G'(t)=3t^2(a+bt)^3+3bt^3(a+bt)^2$
Use $G'(1)=4$
Method of solving equations $b=\frac{1}{3}$; $a=\frac{2}{3}$ | B1
B1
M1
M1
A1A1 | 6 | Seen
aef | | | (ii) | G''(t) correct, any form
Use $G''(1)+G'(1)-\{G'(1)\}^2$
= $\frac{2}{3}$ | B1
M1
A1√ | 3 | ft G"(t). Or from marginal distn | | | (iii) | $G_S(t) = [t^3(\frac{2}{3} + \frac{1}{3}t)^3]^n$
Attempt to find coefficient of t^{3n+3}
${}^{3n}C_3(\frac{2}{3})^{3n-3}(\frac{1}{3})^3$
Given answer obtained correctly | M1
M1
A1√
A1 | 4 | ft slightly incorrect $G_S(t)$ |