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The curve C has the equation 2x + 3y? + 3x°y = 4x%.

The point P on the curve has coordinates (-1, 1).

(a) Find the gradient of the curve at P.
(%)
(b) Hence find the equation of the normal to C at P, giving your answer in the form
ax + by + ¢ =0, where a, b and c are integers.
@)
(a) Use integration by parts to find stin 3x dx.
@)
(b) Using your answer to part (a), find sz cos3x dx.
@)
(a) Expand
1 2
—— Ixl<Z,
(2-5x)° 5

in ascending powers of x, up to and including the term in x?, giving each term as a simplified
fraction.

(%)
Given that the binomial expansion of 2+—kx2 x\ < 3, is
(2-5x) 5
ERPN +ACH .,
2 4
(b) find the value of the constant k,
)
(c) find the value of the constant A.
)
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Figure 1

Figure 1 shows the curve with equation

2X
= || —— |, x=0.
y (3X2 +4)

The finite region S, shown shaded in Figure 1, is bounded by the curve, the x-axis and the
line x = 2.

The region S is rotated 360° about the x-axis.

Use integration to find the exact value of the volume of the solid generated, giving your answer
in the form k In a, where k and a are constants.

()

P40085A 3



AN

,.\
g
=Y

Figure 2

Figure 2 shows a sketch of the curve C with parametric equations

X=4sin (t+%), y=3cos2t, 0<t<2x

(a) Find an expression for :—i in terms of t.

®)
(b) Find the coordinates of all the points on C where j—z =0.

()
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Figure 3 shows a sketch of the curve with equation y =

i

Figure 3

2sin 2x

AR o<x< Z
(1+cosx) 2

The finite region R, shown shaded in Figure 3, is bounded by the curve and the x-axis.

The table below shows corresponding values of x and y for y = _2sin2x_ .
(1+ cos x)
0 z z 3 z
8 4 8 2
0 1.17157 1.02280 0

(@)

(b)

(©)

(d)

Complete the table above giving the missing value of y to 5 decimal places.

1)

Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate
for the area of R, giving your answer to 4 decimal places.
@)
Using the substitution u = 1 + cos x, or otherwise, show that
de =41In(1+cosx)—4cosx+Kk,
(1+cosx)
where K is a constant.
()

Hence calculate the error of the estimate in part (b), giving your answer to 2 significant
figures.
@)

P40085A 5



Relative to a fixed origin O, the point A has position vector (2i — j + 5k),
the point B has position vector (5i + 2j + 10k),

and the point D has position vector (—i + j + 4k).

The line | passes through the points A and B.

(a) Find the vector AB.

)
(b) Find a vector equation for the line I.

(2)
(c) Show that the size of the angle BAD is 109°, to the nearest degree.

(4)

The points A, B and D, together with a point C, are the vertices of the parallelogram ABCD,
where AB = DC.

(d) Find the position vector of C.

)
(e) Find the area of the parallelogram ABCD, giving your answer to 3 significant figures.
©)
() Find the shortest distance from the point D to the line I, giving your answer to 3 significant
figures.
)
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(a) Express

in partial fractions.

1
P(5-P)
3)

A team of conservationists is studying the population of meerkats on a nature reserve. The
population is modelled by the differential equation

P lps-p) 20
it 15

where P, in thousands, is the population of meerkats and t is the time measured in years since the
study began.

Given thatwhent=0, P =1,

(b) solve the differential equation, giving your answer in the form,

where a, b and c are integers.
(8)
(c) Hence show that the population cannot exceed 5000.

1)
TOTAL FOR PAPER: 75 MARKS

END
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EDEXCEL CORE MATHEMATICS C4 (6666) — JANUARY 2012 FINAL MARK SCHEME
Question Scheme Marks
Number
)BEX dy o dy
) =t 246y —+|6Xy+3x"— |=8X M1 Al B1
1. (a) {)i)( y i y x| s =
{j_i = S)é;i—_&(ixy} not necessarily required.
dy 8(-1)-2-6(-1@1) 4
At P(-1,1), m(T) =2 = __4
(=12). m(T) =4 6(1) + 3(—1)° 9 dMLAL cso
[]
-1 9
So,m(N)= — <= =
(b) (N) = { 4} M1
N: y—l:%(x+l) M1
N: 9x -4y +13=0 Al
[3]
(8 marks)
2. (a) IxsinSx dx = —%xcosBx—J- —%cosBx {dx} M1 Al
1 1.
= —=XCOS3X + §sm 3x {+ ¢} Al
[3]
(b) J.x2 cos3x dx = %xzsinSX—jgxsinBX {dx} M1 Al
= lxzsinSX—E(—l XCOS3X + %sin 3Xj {+c} Al isw
{z L e sinax + 2xcos3x - %sinSx {+ c}} Ignore subsequent working [3]
(6 marks)




EDEXCEL CORE MATHEMATICS C4 (6666) — JANUARY 2012

FINAL MARK SCHEME

Qe
1
3.(3) ) - (2-5072=(2) (1—5—2"j %(1—_ @7or > | B1
{ [ (- 2)(**x)+( 2D o+ } ML ALf
= L+ (2) 26 3’( j+
21 2
= [1+5x + Ex +.. }
4 4
=%+%x;+ %x%... Al; Al
[5]
2 +kx 5 [E Can be implied by later work
(b) {(2 5x)? } (2 kx)( * 4x+ {16)( * }j even in part (c). M1
X terms: @+ kx _7x
4 4
giving, 10+ k=7 = k=-3 k=-3|Al
[2]
2 2
(c) X terms; 120X 5k4x M1
So, A_75 5( 3 =E—E_E E0r5—0r5.625 Al
8 4 8 4 8 8
[2]
(9 marks)
° 2
2X
Volume = dx Use of V =7z | y? dx.
_ , +kin(3x* +4) | M1
= (7)[SIn(3x* + 4)} 1
i 0 ~In(3x* +4) | AL
3
NS 1 Substitutes limits of 2 and 0
= (7) _(5'”16j B (5'” 4)} and subtracts the correct way round. M1
So Volume = %ﬂln4 %ﬂln4 or gﬂlnz Al oe isw

[5]
(5 marks)




EDEXCEL CORE MATHEMATICS C4 (6666) — JANUARY 2012

FINAL MARK SCHEME

Question

Number Scheme Marks
5. x=4sin(t+%j, y=3cos2t, O, t<2z
dx Vs dy .
a — =4cos|t+—=|, —=-6sin2t Bl B1
@ | Foelg) g
dy —6sin2t
SO, I pu B1y oe
4cos(t + ) (3)
__\ 6
dy .
(b) — =0 =} —6sin2t=0 M1 oe
dx
. v
@t=0, x_4sm(gj_2, y=3cos0=3 — (2,3 M1
@t==—, x=4sin(2§j =§, y=3cos z=-3 > (2\/_, -3)
(T
@t=r, x=4sm(?j =-2, y=3c0s27=3 - (-2,3)
@t=—,x= 4sin(5—”) = 4(_ﬁ) , y=3c0s37r=-3 > (—2\/_, -3) ALALAL
3 2 (5)
(8 marks)
6. (a) 0.73508 Blcao (1)
(b) Area z%x% ;x[o +2(their 0.73508 + 1.17157 +1.02280) +O] Bl M1
=%x 5.8589... = 1.150392325... =1.1504 (4 dp) awrt 1.1504 | Al 3
du .
(©) {u=1+cosx} = 5 = SN B1
” Bl
_2sin2x_ dx = 2(2sin xcos x) dx sin2x = 2sinxcosXx | B1
(1 + cosx) (1 + cosx)
= IM_(_l)du {z 4!@ du} M1
u u
1
=4J.£——1jdu:4(lnu—u)+c dM1
u
= 4In(1+cosx) —4(1+cosx)+c = 4In(1+cosx)—4cosx +k Al cso (5)
AG
i T Applying limits x =~ and
(d) = [4|n(1+cos—]—4cos—} —[4In(1+ cosO)—4cosO] PPIYINg 2 M1
2 2 x = 0 either way round.
= [4In1 - O] - [4In2 - 4]
=4 -4In2 {=1.227411278 +4=In2)or Al
B =1 - +(4 —4In2) or awrt +1.2
Error = (4 —4In2) -1.1504...
( ) | awrt £0.077 | 1y oo o)
=0.0770112776... = 0.077 (2sf) or awrt +6.3(%)
(12 marks)
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FINAL MARK SCHEME

Question

Scheme Marks
Number
7. OA=2i—j+5k , OB =5i+2j+10Kk, {oc = 2i +4j+9k} & OD=—i+j+4k
() AB = = £((5i + 2j+10k)—(2i — j+ 5k)); = 3i + 3j+ 5k M1; Al
[2]
2 3 5 3
(b) l:r=|-1|+A4|3] or r=| 2|+A4|3 M1 Alft
5 5 10 5
C [2]
Let & = BAD
Let d be the shortest
distance from C to I.
I
V43 B
-1 2 -3 3
©) AD=0D-OA=| 1|-|-1|=| 2| or DA=|-2 M1
4 5 -1 1
3) (-3 Applies dot product
3le| 2 formula between
cos @ = = .
|AB|[AD| 3P+ @) +(6) (-3 +(2° +(-1)?  and their (AD or DA).
oS 6 = + : : —29+6—52 : : Correct followed thrE[)_ugh ALY
\[(3) +(3)2+(5)°. \/(_3) 1 (272 + (-1 expression or equation.
-8 Al cso AG
C0S @ = ———= = 6 =109.029544... =109 (nearest °
\mﬂ ( ) awrt 109
[4]
(d) OC = OD +DC = OD + AB =(—i + j+ 4k) + (3i + 3j+ 5k) M1
OC = OB+ BC = OB + AD = (5i + 2j+10k) + (-3i + 2j— k)
So, OC = 2i + 4j+ 9k Al
[2]
() | Area ABCD = (4(\/43)(/14)sin109' ); x 2 = 23.19894905 awrt 23.2 | M1; dM1 Al
[3]
d .
f — =sin71  or /43d =23.19894905... M1
) N
. d = \14sin71" = 3.537806563... awrt 3.54 | Al
[2]
(15 marks)
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FINAL MARK SCHEME

Question

Scheme Marks
Number
8. (a) 1=AG-P)+BP Can be implied. | M1
A= 1 B= l Either one. | Al
5 5
N
iving = +
giving P G-P Al cao, aef
[3]
1 1
dP = | —dt Bl
(b) _[P(S -P) 15
1 1 1 M1*
EInP—gIn(S—P)_Et (+¢) Alft
1 1 1
{t=0,P=1=} glnl—gln(4)=0+c = c:—gln4 dM1*
Using any of the
eq: T B I subtraction (or addition) | .\
5 |(5—P 15 5 laws for logarithms
CORRECTLY
nl 4P| 21,
5-P 3
eg i _e%t or eg H _e_%t El . 1 ’ 1 dMl*
I " Tap 1minate In’s correctly.
gives 4P = 5¢% — Pe?' = P(4 +e')= 5’
5es! A .
P = o ( lt) Make P the subject. | dM1*
(4+ev) (+e%)
P=—F"—— or Pz%etc. Al
Q+4e®) (5+20e*)
(8]
(©) 1+4e*>1 = P<5. So population cannot exceed 5000. Bl
[1]
(12 marks)




