Quadratic Formula

Given a general quadratic equation $ax^2 + bx + c = 0$, the solutions are given by

$$x = \frac{-b \pm \sqrt{b^2 - (4ac)}}{2a}$$

You will find easier to work out the $b^2 - (4ac)$ by itself and then put this value into the formula. Remember also that we *always*, *always* get the quadratic equation equal to zero.

Nice Formula Questions

Use the quadratic formula to solve the following quadratics. You should find they are nice answers (fractions and/or integers).

1. $x^2 - 6x + 8 = 0$.	x = 4 or x = 2
2. $2x^2 + x - 3 = 0$.	$x = -\frac{3}{2} \text{ or } x = 1$
$34x^2 + 11x - 6 = 0.$	$x = 2 \text{ or } x = \frac{3}{4}$
4. $10x^2 + 11x - 6 = 0$.	$x = -\frac{3}{2}$ or $x = \frac{2}{5}$
5. $9x^2 - 12x + 4 = 0$.	$x = \frac{2}{3}$ repeated

Nasty Formula Questions

Use the formula to solve the following quadratics. You should find they are nasty (long decimal) answers. Give your answers to 3 significant figures.

1. $2x^2 - 3x - 7 = 0$.	$x = 2.765 \dots$ or $x = -1.265 \dots$
2. $x^2 + 6x - 10 = 0$.	x = -7.358 or $x = 1.358$
$32x^2 + 2x + 7 = 0.$	x = 2.436 or $x = -1.436$
4. $2x^2 - 3x - 7 = 2x - 1$.	x = 3.386 or $x = -0.886$
5. $x^2 + 1 = 4x$.	
6. $2x^2 + 7x = 5$.	
7. $x^2 - 50 = 0$.	
8. $4x^2 = x + 2$.	
9. $3z^2 = 2 - 8z$.	z = -2.90 or z = 0.230

Factorising Simple Quadratics

Factorise the following quadratics. For example $x^2 + 4x - 12 = (x - 2)(x + 6)$. You are looking for two numbers that sum to 4 and multiply to -12; i.e. 6 and -2.

1. $x^2 + 5x - 24$.	(x+8)(x-3)
2. $x^2 + 7x + 10$.	(x+5)(x+2)
3. $x^2 - 15x + 56$.	(x-8)(x-7)

4. $x^2 - 6x - 40$.	(x-10)(x+4)
5. $x^2 - 81$.	$\boxed{(x-9)(x+9)}$
6. $x^2 - 5x - 14$.	(x-7)(x+2)
7. $x^2 + 3x - 154$.	(x+14)(x-11)
8. $2x^2 - 6x - 36 = x^2 - x$.	(x-9)(x+4)

Solving Simple Quadratics by Factorising

Solve the following equations by factorising. For example if you are given $x^2 + x - 6 = 0$, this factorises to (x - 2)(x + 3) = 0 so the solutions are x = -3 or x = 2.

1. $(x+4)(x-2) = 0$.	x = -4 or x = 2
2. $x^2 - 8x + 7 = 0$.	x = 7 or x = 1
3. $x^2 - 3x - 28 = 0$.	x = 7 or x = -4
4. $2x^2 + x + 3 = (x - 1)^2$.	x = -2 or x = -1