
Proof That e Is Irrational

Preliminaries: We require knowledge that
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As with many irrationality proofs we suppose that e is rational for contradiction. Therefore
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where p and q are integers. Since q is an integer we must somewhere get to the term 1
q! in the

series for e, so
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Multiplying both sides by q! we obtain
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The term p(q − 1)! is clearly an integer. The term q!
(

1 + 1 + 1
2! +

1
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)

is also an

integer since q! is divisible by all factorials up to, and including, q!. So if we can demonstrate
that the remaining term q!

(q+1)! +
q!

(q+2)! + · · · is not an integer then our proof is complete, since
it is impossible that integer = integer + non-integer.

Now
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and we can see (by considering respective terms) that
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The left hand side of the above is clearly greater than zero. The right hand side
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is an infinite geometric series with
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[Note S∞ exists since r = 1
q+1 clearly satisfies −1 < r < 1.] Therefore
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which demonstrates that 1
q+1 + 1

(q+2)(q+1) + 1
(q+3)(q+2)(q+1) + · · · is not an integer and our

contradiction is complete.

e 6=
p

q
for integer p and q.
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