Proof That e Is Irrational

Preliminaries: We require knowledge that
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As with many irrationality proofs we suppose that e is rational for contradiction. Therefore
suppose
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where p and ¢ are integers. Since ¢ is an integer we must somewhere get to the term % in the
series for e, so
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Multiplying both sides by ¢! we obtain
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The term p(q — 1)! is clearly an integer. The term ¢! <1 +1+ % + % + -+ %) is also an
integer since ¢! is divisible by all factorials up to, and including, ¢!. So if we can demonstrate
that the remaining term (qur—!l)! + (qur—!2)! + ... is not an integer then our proof is complete, since
it is impossible that integer = integer + non-integer.

Now
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and we can see (by considering respective terms) that
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The left hand side of the above is clearly greater than zero. The right hand side
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is an infinite geometric series with
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[Note Sy exists since r = q_%l clearly satisfies —1 < r < 1.] Therefore
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is not an integer and our

e# P for integer p and q.
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