E Summer Proportion General

1.	The variable	v varies with	the square of <i>t</i> .	When $t = 2, v = 20$.
----	--------------	---------------	--------------------------	------------------------

1	<u>۱</u>	<u>г</u> . 1	C 1	C	•		C.
((a)	Find a	formula	for v	ın	terms	of t .

(b) Find *v* when $t = \frac{1}{2}$. (c) Find *t* when *v* = 500.

- (a) Find a formula for E in terms of l.
- (b) Find *E* when $l = \frac{4}{9}$.
- (c) Find l when E = 5.
- 3. The variable *P* varies with the cube root of *f*. When f = 27, P = 7.
 - (a) Find a formula for *P* in terms of *f*.
 - (b) Find P when $f = \frac{8}{27}$.
 - (c) Find f when P = 14.
- 4. The variable *F* varies directly *m*. When m = 5, F = 9.
 - (a) Find a formula for F in terms of m.
 - (b) Find F when m = 6.
 - (c) Find m when F = 17.
- 5. The variable *T* varies inversely with the cube root of *h*. When h = 125, T = 100.

(a) Find a formula for T in terms of h.	$T = \frac{500}{\sqrt[3]{h}}$
(b) Find a formula for h in terms of T .	$h = \frac{125000000}{T^3}$
(c) Find T when $h = 8$.	250
(d) Find h when $T = 5$.	1 000 000

6. The variable Φ varies with the cube of λ . Copy and complete the following table (hint: you may need to find the relationship first).

$$\begin{array}{c|cccc} \lambda & 2 & 3 & 10 \\ \hline \Phi & 56 & 875 \end{array}$$

5, 189, 7000

 $v = 5t^2$

 $\frac{5}{4}$

10

 $E = \frac{12}{\sqrt{l}}$

18

 $\frac{144}{25}$

 $P = \frac{7}{3} \sqrt[3]{f}$

 $\frac{14}{9}$

216

 $F = \frac{9}{5}m$

 $\frac{54}{5}$

 $\frac{85}{9}$

7. The variable Ψ varies inversely with the square root of τ . Copy and complete the following table (hint: you may need to find the relationship first).

$$\begin{array}{c|ccccc} \tau & 16 & 25 \\ \hline \Psi & 50 & \frac{100}{3} & 20 \end{array}$$

36, 100, 40