E Summer Functions Domain & Range Remember: The domain of a function is the set of values x can take. The range of a function is the set of values f(x) can take. If you have a quadratic function the vertex is a particularly useful thing to work out. A sketch of your function (y = f(x)) is also vital. A domain is *always* a statement involving x (e.g. $-1 \le x < 5$) and the range is *always* a statement involving f(x) (e.g. $f(x) \le 3$). 1. Given $$f(x) = x + 3$$, find the natural domain of $f(x)$. 2. Given $$f(x) = \sqrt{x-5}$$, find the natural domain of $f(x)$. 3. Given $$f(x) = \sqrt{2x + 11}$$, find the natural domain of $f(x)$. 4. Given $$f(x) = \sqrt{12 - 3x} + 5$$, find the natural domain of $f(x)$. 5. Given $$f(x) = (x+3)^2 + 1$$, find the range of $f(x)$. 6. Given $$f(x) = x^2 + 8x + 1$$, find the range of $f(x)$. 7. Given $$f(x) = 2x^2 - 12x - 3$$, find the range of $f(x)$. 8. Given $$f(x) = -x^2 - 2x + 10$$, find the range of $f(x)$. 9. Given $$f(x) = 2 + \sqrt{x+3}$$, find the natural domain of $f(x)$. Find the range of $f(x)$. 10. Given $$f(x) = x^2 - 4x + 3$$, where the domain is restricted to $x \ge 3$, find the range of $f(x)$. 11. Given $$f(x) = x^2 + 8x + 1$$, where the domain is restricted to $x \le -1$, find the range of $f(x)$. 12. Given $$f(x) = \sin x$$, where the domain is restricted to $30 < x < 90$, find the range of $f(x)$. 13. Given $$f(x) = -\tan x$$, where the domain is restricted to $30 \le x < 90$, find the range of $f(x)$. 14. Given $$f(x) = \frac{2}{x+1}$$, where the domain is restricted to $x \ge 0$, find the range of $f(x)$. 15. Given $$f(x) = -10^{x-1}$$, where the domain is restricted to $x \le 3$ find the range of $f(x)$. 16. Given $$f(x) = x(x-1)(x+3)$$, where the domain is restricted to $x \ge 2$ find the range of $f(x)$. 17. Given $$f(x) = (x-2)^2(x+2)^2$$, where the domain is restricted to $-2 \le x \le 2$ find the range of $f(x)$.