E Summer Functions Domain & Range

Remember: The domain of a function is the set of values x can take. The range of a function is the set of values f(x) can take. If you have a quadratic function the vertex is a particularly useful thing to work out. A sketch of your function (y = f(x)) is also vital.

A domain is *always* a statement involving x (e.g. $-1 \le x < 5$) and the range is *always* a statement involving f(x) (e.g. $f(x) \le 3$).

1. Given
$$f(x) = x + 3$$
, find the natural domain of $f(x)$.

2. Given
$$f(x) = \sqrt{x-5}$$
, find the natural domain of $f(x)$.

3. Given
$$f(x) = \sqrt{2x + 11}$$
, find the natural domain of $f(x)$.

4. Given
$$f(x) = \sqrt{12 - 3x} + 5$$
, find the natural domain of $f(x)$.

5. Given
$$f(x) = (x+3)^2 + 1$$
, find the range of $f(x)$.

6. Given
$$f(x) = x^2 + 8x + 1$$
, find the range of $f(x)$.

7. Given
$$f(x) = 2x^2 - 12x - 3$$
, find the range of $f(x)$.

8. Given
$$f(x) = -x^2 - 2x + 10$$
, find the range of $f(x)$.

9. Given
$$f(x) = 2 + \sqrt{x+3}$$
, find the natural domain of $f(x)$. Find the range of $f(x)$.

10. Given
$$f(x) = x^2 - 4x + 3$$
, where the domain is restricted to $x \ge 3$, find the range of $f(x)$.

11. Given
$$f(x) = x^2 + 8x + 1$$
, where the domain is restricted to $x \le -1$, find the range of $f(x)$.

12. Given
$$f(x) = \sin x$$
, where the domain is restricted to $30 < x < 90$, find the range of $f(x)$.

13. Given
$$f(x) = -\tan x$$
, where the domain is restricted to $30 \le x < 90$, find the range of $f(x)$.

14. Given
$$f(x) = \frac{2}{x+1}$$
, where the domain is restricted to $x \ge 0$, find the range of $f(x)$.

15. Given
$$f(x) = -10^{x-1}$$
, where the domain is restricted to $x \le 3$ find the range of $f(x)$.

16. Given
$$f(x) = x(x-1)(x+3)$$
, where the domain is restricted to $x \ge 2$ find the range of $f(x)$.

17. Given
$$f(x) = (x-2)^2(x+2)^2$$
, where the domain is restricted to $-2 \le x \le 2$ find the range of $f(x)$.