June 2006 9801 Advanced Extension Award Mark Scheme

Question Number	Scheme	Marks
] (a)	$(1-y)^{-2} = 1 + 2y + 3y^2 + 4y^3 +$	B1 (1)
(1)	$S = 1 + 2\left(\frac{x}{1+x}\right) + 3\left(\frac{x}{1+x}\right)^2 + \cdots$ Identify $y = \frac{x}{x+1}$	MI
	$\Rightarrow S = 1 + 2y + 3y^2 + \cdots$	ΑI
	$= \left(1 - \frac{2}{1+x}\right)^{-2}$ $= \left(1 + x\right)^{+2}, 50 \alpha = 1, n = 2$	MI, H (4)
(0)	Need / x / < 1 correct condition	Βİ
	$\frac{1}{-11} \frac{1}{\sqrt{x}} = -1$ $\frac{x}{x+1} = -1$	MI
	- 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	A1 (3)

Question Number	Scheme	Marks
2	$\left(\frac{\sin 2\theta - \sqrt{3}\cos 2\theta}{\sin \theta + \cos \theta} - \sqrt{6}\right) = 0$	MI (factor)
	sin 20 - √3 co 20 =0 => tam 20 = √3 or sin(20-60°)=0	AI
THE PARTY OF THE P	=> 20 = 60°, 240°, 420°, 600° 0 = 30°, 120°, 210°, 300°	MI
	2 cos20 - √6=0 > 2 (cos20 - sin20) = √6 (upe Acor	
	(: con + 5 = 0 +0) (con 0 + 5 = 0) = V6	(Forton) MI
	$= cos(0+45^{\circ}) = \sqrt{6} \cdot \frac{1}{2} = \sqrt{3}$	MI, AI
	0+45° = (30), 330, 390 Pron(# one correct value for (0+45)	- 1
	0 = 285°, 345° (cao)	
		(10)
	-	

(a)	$\log_{y} x = 2 \qquad x = y^{2}$ $\therefore y = x^{2} \Rightarrow \log_{y} y = \frac{1}{2} = \frac{1}{2}$	MI (out of logs)
	or $\log_{2} x = \log_{2} x^{\frac{1}{2}} = \frac{1}{2} \log_{2} x^{\frac{1}{2}} = \frac{1}{2\log_{2} x}$ (Armor)	A1 c.50
(P)	$\log_{x} y = \log_{y} x = \frac{1}{\log_{x} y} \Rightarrow (\log_{x} y)^{2} = 1$ $= \log_{x} y = \pm 1$	MI
	$\log_{x} y \neq 1 : x \neq y : = \log_{x} y = -1$ $= y = \frac{1}{x}$	A1 c_so (2)
(4)	First equation => y = 1/2 Second equation => log x (x-1/x) = log (x+1/x) = Z	MI
-	$= \chi^{\frac{1}{2}} = \chi - \frac{1}{\chi} \qquad \qquad (\frac{1}{\chi})^{\frac{1}{2}} = \chi + \frac{1}{\chi}$ $= \chi^{\frac{1}{2}} \left(\frac{1}{\chi}\right)^{\frac{1}{2}} = 1 = (\chi - \frac{1}{\chi})(\chi + \frac{1}{\chi}) \qquad (\text{elimin})$	i MI
	$\Rightarrow 3(^{2} = (x^{2} - 1)(x^{2} + 1)$ $\Rightarrow x^{4} - x^{2} - 1 = 0 \qquad (quadratic)$ $x^{2} = (1 \pm \sqrt{5})/2$	MI,AI
-	$\chi^2 > 0$, here $\chi^2 = \frac{1 + \sqrt{5}}{2}$ (qualiformula $+ \chi^2 > 0$)	m(
	$f = \frac{1}{5c} = \sqrt{\frac{2}{1+\sqrt{5}}} \left(\text{ or } \sqrt{\frac{5}{2}-1} \right)$	AI
		(7)

			7
On 4	(x+4)2+ (y-7)2 = 13 and y=mx		
(a)	= (x2+8x+16)+ (m2x2-14mx+49) = 13	m/	
	(1+m²)x²+(8-14m)x+52=0 (36-9	1 A (1.	
	Touches, so "b=4ac" (8-14m)2 = 4 x52 x(1+m2)	W1(6=0	(a)
	(4-7m) = 52 + 52m	Alcso	
	:- 3m+56m+36=0 *	14	}
(6)	(3m+2)(m+18) = 0	MI	
	m = -2/3 or -18 (both m)	A1	
	(-4/7) Ay Lat A or B be (X,7)		
	then (x+++)+13 = 4+72 = 65		
	x + + + = 52	M(, A 1	
	$Y = -\frac{2}{3}X \implies \frac{13}{9} x^{2} = 52 \implies X = \pm 6$	1	
		[M1,41	
	From the configuration $X_8 = -6 = Y_8 = +4 : Bis(-6,4)$	3	
	Y=-18 X => 325X=52 => X=4		
	Agai X < 0 for A = X=-2 ; Y= 36 5		
	$A = (-\frac{1}{5}, \frac{36}{5})$	MI, AI	
		(8)	
(0)	Sutration is a translation of problem in (6) by (4)	MI	
	So Pod are (-6)+(4) and (-2,36)+(4,-7)		
	30 1,50 -11 (4) (-1)		
	$= \left(\frac{-2}{5}, \frac{-3}{5}\right) \text{and} \left(\frac{18}{5}, \frac{1}{5}\right)$	Al (entlar)
		(2)	

r	<u> </u>	
Ous (a)	1 => -11-5-47 = 3+8/ => -14.5-47 =8/ (3) × => -1 = 8-5-11/ => 8.5+7 = 11/ (3)	
	Solve any pair of these (fremt to solve?) (1) 2(2) $\Rightarrow \lambda = \frac{15}{8}$, $\mu = \frac{3}{2}$ (5d" for any)	MI
	Check is third equation = in consisterry (check) Here by, by do not intersect (comment)	M1 (5)
(6)	$\begin{pmatrix} 1 \\ 8 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = 14+8-2L = 0 : \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \perp^{r} L_{r} (40H)$	A1 (2)
(0)	$ \frac{3}{AB} = \begin{pmatrix} 7\mu + 11.5 - (-2+3\lambda) \\ 8\mu + 3 - (-11.5 - 4\lambda) \\ -11\mu + 8.5 - (-\lambda) \end{pmatrix} = \begin{pmatrix} 7\mu - 3\lambda + 13.5 \\ 8\mu + 4\lambda + 14.5 \\ -11\mu + \lambda + 8.5 \end{pmatrix} $ $ \frac{3}{AB} = \begin{pmatrix} 7\mu + 11.5 - (-2+3\lambda) \\ 8\mu + 4\lambda + 14.5 \\ -11\mu + \lambda + 8.5 \end{pmatrix} $ $ \frac{3}{AB} = \begin{pmatrix} 7\mu - 3\lambda + 13.5 \\ 8\mu + 4\lambda + 14.5 \\ -11\mu + \lambda + 8.5 \end{pmatrix} $ $ \frac{3}{AB} = \begin{pmatrix} 7\mu - 3\lambda + 2311\mu + \lambda + 17 \\ 2\mu - 3\lambda + 2311\mu + 17 \\ 2\mu - 3$	For AB) MI
	= 18m-4x+5=0 (4) "2j"="i" => 16m+8x+29=7/2-31+13.5 => 9m+11x+15-5=0(5)	M
	$ \begin{array}{cccc} & & & & & & & & & & & & & & & & & & & $	m(A1, +1
	(14)	(8)

0.6	(a) $x=1$; $y=\sin(\ln 1)=\sin 0=0$:. $P=(1,0)$ and Phis on C	B1 25.0(j
(p)	y = 1 cos (ln x)	MI, AH
	y'=0 at Q : cos (le x) =0 : le x=17/2	MI
	Q = (e T/2, s=(lne T/1)	A-I
	= (<u>eTh, 1)</u>	M (5
(0)	Area = $\int_{0}^{e^{\pi x}} S \cdot i(\ln x) dx - Area \Delta PaR$ (convert Or PR Area = $\frac{1}{2} \times 1 \times (e^{\pi 7_2} - i)$	MI
	Aren APar = 1 x 1 x (e 172_1)	Ві
	Olip R	L) M(
	for integral; let lux = u : x=e (sub)	,
-	E - Sin u (e "du) (Sin u)	
	= (e" sinu] = Je" con u du (limb) (pam)	
	- The Tengan Tenden	
	:. 2 I = 0 +1	
	$\Sigma = \frac{1}{2} \left(1 + 2^{\pi / 2} \right) \tag{I)}$	A I
	: Arex = \frac{1}{2} (1+2 T/2) - \frac{1}{2} (-1+2 T/2) = 1	AI
		(9)
L		

Qu7.	Appopriate figure	MI
(a)	$\Rightarrow \text{Sind} = \frac{r_i - r_{i+1}}{r_{i+1}} (\text{exp. for} \\ \text{Sind})$	M1, A1
Ì	: (1:+1:+1) 5mm x = 1:-1:+1	
	= riti (1+ sind) = ri(1-sind) -1	(#) MI
	$\frac{1-\sin \alpha}{1+\sin \alpha} = \frac{1-\sin \alpha}{1+\sin \alpha} $ $(=r)$	Aleso
(6)	Tout wen = TR2 + Tr2+ Tr3+	Ales.
	= TR2 (1+ r2+ r4+) (correct "r")	βı
	$=\frac{TR^2}{1-r^2}=\frac{TR^2}{1-\left(\frac{1-s-id}{1+s-id}\right)^2}$	
		14
	$= \frac{KR^2 \left(1 + \sin k\right)^2}{\left(1 + \sin k\right)^2 - \left(1 - \sin k\right)^2} = \frac{KR^2 \left(1 + \sin k\right)^2}{4 \sin k}$	A((3)
1		0,
(0)	Required oven = 2 x Aven & POA + Aven major seche AOB	MI
,	- Area found in (b).	٥.
	Aren A Port = 1 th. (Root d)	ВІ
	LPOA = The - angle of major fector to B = TT+2x	M
	: Aren Sector AOB = IR (T+20)	A1
	: Required area = R2 (cot & + T + d - T (1+25 is & +5 is d)	
	= R' (x+cot x - T cosec x - T sind)	& Hes
		(5)

	(d) ds = R2(1-concid+Ty concextotx -Tycnx)	M1, #1
(Cont.	= R2 (-cot'x + II cosk - I cosx)	-
		MI
	= P2 (-cot d + T cord (corec d-1)) = P2 (st d (T cord -1) cot x = com d 0:2.	-1)
	(=	50) A1 (4)
(e)	In the given range 1 cot x >0	
	In the interval (0, Tru); I cond-1 is a decreasing	
	function (: cords decreasing). At d=0, The cord-1 = The-1 < 0	
	T 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	M.
	:- ds <0 thoughout the interval - agreent)	,
	: head volve of 5 occurs at d=TT4	AI
	M= S = 12 (=+1-=	
	= 12 (1- T (1+ /2+1/2)) 0.2.	AI
		(3)
	•	